UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

May/June 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

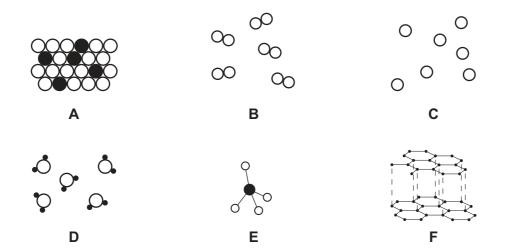
Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use						
1						
2						
3						
4						
5						
6						
Total						


This document consists of **16** printed pages.

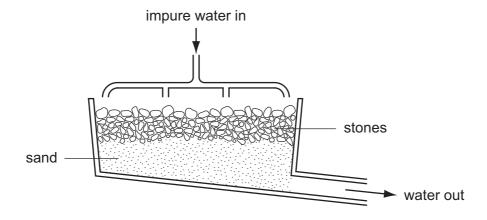
IB04 06_0620_02/2RP © UCLES 2004

[Turn over

1 The diagram shows models of various structures,

(a)	Wh	ich three of the structures A to F represent elements? Give a reason for your ansv	ver.
	stru	ictures	
	rea	son	[2]
(b)	Wh	ich one of the structures A to F represents a gas containing single atoms?	
			[1]
(c)	(i)	Which one of the structures A to F represents a gas containing diatomic molecule	es?
	(ii)	State the name of a gas which has diatomic molecules.	
			[2]
(d)	(i)	Which one of the structures A to F represents graphite?	
	(ii)	State one use of graphite.	
			[2]

(e)	Stru	ucture D represe	ents a compound.				
	(i)	State what is r	meant by the term com	pound.			
	(ii)	Which one of t	the following substance	es is structi	ure E most lik	ely to represer	nt?
		Put a ring arou	and the correct answer				
		ammonia	hydrogen chloric		methane	water	[2]
(f)	Нус	drogen chloride	is a compound.				
.,	(i)	_	m to show how the ele	ctrons are	arranged in a	molecule of h	ydrogen
			outer electrons.				
		,			show hvo	drogen electro	ns as •
						nlorine electro	
							[2]
	(ii)		e of the type of bondin				
	` '				, ,		[1]
	/iii\	Hydrogen chlo	oride dissolves in wate				
	(iii)		you would use litmus p				
							[2]
	(iv)		the following values lrochloric acid?				
		Put a ring arou	und the correct answer				
		pH 2	рН7	pH10		pH14	[1]


(v)	Comple	following	equation	for	the	reaction	of	hydrochloric	acid	with	
	Mg(s)	HC1	(aq)	\rightarrow	Mg	C <i>l</i> ₂(aq)	+	H ₂ (g)		[1]	

(vi) Name the salt formed in this reaction.

[1]

© UCLES 2004

2 Two of the stages in water purification are filtration and chlorination. The diagram below shows a filter tank.

(a)	Ехр	lain how this filter helps purify the water.								
			[2]							
(b)	(i)	Why is chlorine added during water purification?								
(ii)	After chlorination, the water is acidic. A small amount of slaked lime is added to t acidic water. Explain why slaked lime is added.	he							
(i	ii)	What is the chemical name for slaked lime?								
(i	v)	State one other use of slaked lime.	[4]							

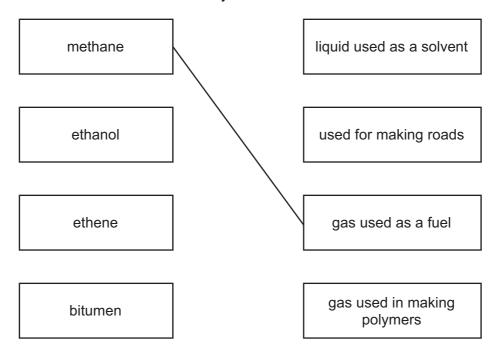
(c)	(i)	State the b	ooiling	point of	pure water	·.					
											[2]
	(ii)	Describe a	a chem	nical test	for water.						
		test									[1]
		result									[1]
((iii)	State one	use of	f water ir	the home						
											[1]
(d)	The	diagram s	hows t	the arran	gement of	particles in the	ne three	e differe	nt states o	of water	
			0								
		Α				В			С		
	Whi	ch of these	diagr	ams, A ,	B or C , sho	ows water in a	a solid	state?			
						***************************************					[1]
	01										
(e)		am reacts v reaction.	with et	hene in t	he presen	ce of a cataly	st. Con	nplete ti	ne word ed	quation	tor
	ethe	ene	+	steam	\rightarrow	***************************************					[1]
(f)	Pota	assium rea	cts vio	lently wi	th water. C	complete the	word ed	quation	for this rea	iction.	
.,		assium	+	water	\rightarrow	·		. +			
											[2]

© UCLES 2004 0620/02/M/J/04

3		en lu ased		of ca	lcium	carbor	ate rea	act with	hydrod	chloric	acid,	carbon	dioxide	gas is
		CaC	CO ₃ (s)	+	2H	łC <i>l</i> (aq)	\rightarrow	CaC	$l_2(aq)$	+	CO ₂ (g) +	+ H ₂ C	O(I)
	(a)					method eaction		estigatir	ng this r	eactior	n, whic	h would	d enable	you to

														[4]
	(b)	Wha	at effe	ct will	the fo	ollowing	have o	n the ra	te of the	reacti	on?			
		(i)	increa	asing	the te	mperatı	ıre							
		(ii)	addin	g wat	er to t	he acid								
	((iii)	using	powd	lered	calcium	carbor	nate inst	ead of l	umps				
														[3]
	(c)	Des	scribe a	a test	for ca	alcium ic	ns.							
		resu	ult						**********					
		test							**********				**********	
			.,										************	[3]

(d)	Cal	cium can be obtained by the electrolysis of molten calcium chloride.	
	(i)	Suggest why calcium must be extracted by electrolysis rather than by reduction with carbon.	on
			[1]


(ii) Draw the electronic structure of an atom of calcium.

[2]

© UCLES 2004 0620/02/M/J/04

[3]

- 4 Organic substances have many uses.
 - (a) Match the substances in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

(b) Which one of the following would be least likely to be obtained from the fractional distillation of petroleum? Put a ring around the correct answer.

bitumen ethane ethanol methane [1]

(c) Some reactions of organic compounds are shown below.

A
$$n CH_2=CH_2 \longrightarrow (-CH_2-CH_2-)_n$$

B
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

C
$$C_6H_{12}O_6$$
 \longrightarrow $2CO_2 + 2C_2H_5OH$ glucose

D
$$C_8H_{18}$$
 \longrightarrow $C_6H_{14} + C_2H_4$

(i) Which **one** of the reactions, **A**, **B**, **C** or **D**, shows fermentation?

(ii) Which one of the reactions, A, B, C or D, shows polymerization?

.....

(iii) Which one of the reactions, A, B, C or D, shows combustion?

(iv) Which one of the reactions, A, B, C or D, shows cracking?

- (d) The hydrocarbon C₈H₁₈ is an alkane.
 - (i) What is meant by the term hydrocarbon?

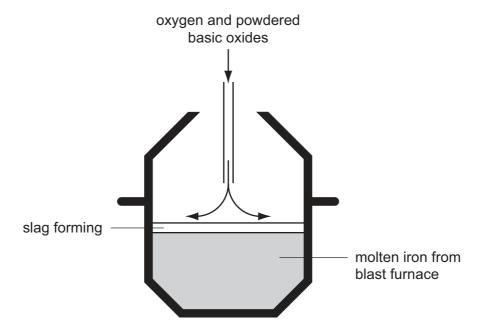
.....

(ii) Explain why this hydrocarbon is an alkane.

[2]

5 Look at the list of five elements below.

argon bromine chlorine iodine potassium


		·								
(a)	Put	these five elements in order of increasing proton number.								
		[1]							
(b)	Put	these five elements in order of increasing relative atomic mass.								
		[1]							
(c)	The orders of proton number and relative atomic mass for these five elements are different. Which one of the following is the most likely explanation for this?									
	Tick	k one box.								
	The	e proton number of a particular element may vary.								
	The	e presence of neutrons.								
	The atoms easily gain or lose electrons.									
		e number of protons must always equal the number of utrons.	1]							
		ι	']							
(d)	Whi	ich of the five elements in the list are in the same group of the Periodic Table?								
			1]							
(e)	(i)	From the list, choose one element which has one electron in its outer shell.								
			1]							
	(ii)	From the list, choose one element which has a full outer shell of electrons.								
			1]							

(f)	Which two of the following statements about argon are correct?										
	Tick two boxes.										
	Argon is a noble gas.										
	Argon reacts readily with potassium.										
	Argon is used to fill weather balloons.										
	Argon is used in light bulbs.	[2]									
(g)	Potassium chloride can be made by reacting potassium with chlorine. The bonding in potassium chloride is ionic.										
	potassium chloride is ionic. What does this information tell you about (i) the boiling point of potassium chloride, [1]										
	(i) the boiling point of potassium chloride,										
		[1]									
	(ii) the electrical conductivity of molten potassium chloride?										
		[1]									
(h)	Describe the change in the electronic structure of potassium and they combine to make potassium chloride.	chlorine atoms when									
	change in potassium atom										
	change in chlorine atom										
		[0]									
		[2]									

	ron is extracted from its ore in a blast furnace using carbon (coke) as a reducing agent and as a source of heat.									
(a)	(a) The coke burns in hot air. The equation for this reaction is									
	2C(s)	+	$O_2(g)$	\rightarrow	2CO(g)					
	State the	name	of the gas p	oroduced	I in this read	ction.				
								[1]		
(b)	Near the t	op of	the blast fui	nace, th	e iron(III) o	xide in the	e iron ore gets	reduced to iron.		
	$Fe_2O_3(s)$	+	3CO(g)	\rightarrow	2Fe(I)	+	$3CO_2(g)$			
	Use the ereaction.	equatio	on to expla	in why t	he change	of iron(II	I) oxide to iro	n is a reduction		
								[1]		
(c)			gions of the quation for t			kide is red	luced by carbo	n.		
	Fe ₂ O ₃ (s)	+	C(s)	\rightarrow	Fe((I) +	3CO(g)	[2]		

6

(d) The iron from the blast furnace contains up to 10% by mass of impurities. The main impurities are carbon, silicon and phosphorus. The diagram below shows one method of making steel from iron.

A mixture of oxygen and basic oxides is blown onto the surface of the molten iron.

(i)	What is the purpose of blowing oxygen onto the molten iron?	
(ii)	A large amount of energy is released in the process of steelmaking.	[1]
	What name is given to chemical reactions which release energy?	[1]
iii)	The basic oxides react with the impurities in the iron and form a slag. Whi information in the diagram suggests that the slag is less dense than the molterion?	
iv)	Which one of the following is a basic oxide? Put a ring around the correct answer.	[1]
	calcium oxide carbon dioxide sulphur dioxide water [[1]
(v)	Why is steel rather than iron used for constructing buildings and bridges?	
	1	[1]

© UCLES 2004 0620/02/M/J/04

(e)	Special steels contain added elements such as vanadium, chromium, cobalt or nicl These are all transition metals.	kel.
	State three properties of transition metals which are not shown by non-transit metals.	ion
	1.	
	2.	
	3.	[3]
(f)	What is the name given to metals which are mixtures of more than one metal?	
		[1]

0620/02/M/J/04

The Periodic Table of the Elements **DATA SHEET**

								Gro	Group								
_	=											≡	2	>	N	IIV	0
							T Hydrogen										4 He Helium
Lithium 3 23 8 8 8 8 8 8 8 8 8 8 8 8 8 8 11	Be Beryllium 24 Mag Magnesium 12	, E _ En										11 B Boron 5 27 A1 Aluminium 13	Carbon 6 Carbon 8 Silicon 114	Nitrogen 7 31 Ph osphorus 15	16 Oxygen 8 32 S Sulphur	19 Fluorine 9 35.5 C1	20 Ne
39 K Potassium	40 Ca Calcium 20	Scandium Scandium 21	48 Ti Titanium	51 Vanadium 23	52 Cr Chromium 24	Mn Manganese	56 Fe Iron	59 Co Cobalt 27	59 X Nickel 28	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium	75 AS Arsenic	79 Se Selenium 34	80 Br Bromine	84 K Krypton 36
Rubidium 37	Strontium 38	89 X	91 Zr Zrconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cd Cadmium Cad Cadmium 48	115 In Indium 49	Sn Tin 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine	131 Xe Xenon
Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	178 Hf Hafnium * 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T1 Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Actinium 89															
*58-71 90-103	'58-71 Lanthanoid series 90-103 Actinoid series	*58-71 Lanthanoid series 90-103 Actinoid series		140 Ce Cerium 58	Praseodymium 59	Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	Gd Gadolinium 64	159 Tb Terbium	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Yterbium	175 Lu Lutetium 71
	В	a = relative atomic mass	mic mass	232		030				_							

Fm ರ **Berkelium** Curium Curium Am Americium 95 Pu 232 **Th** 8 b = proton (atomic) number

X = atomic symbol

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.